University of Florida Homepage

Yanez

Bonding Perturbations Triggered by Intrinsically Electron-Deficient Systems

Manuel Yáñez1, Otilia Mó1, M. Merced Montero-Campillo1, Ibon Alkorta2,
José Elguero2

1Universidad Autónoma de Madrid. Departamento de Química. Cantoblanco, 28049-
Madrid. Spain

2C.S.I.C., Instituto de Química Médica. Juan de la Cierva 3, 28006-Madrid, Spain
Email: manuel.yanez@uam.es

The interaction between electron-deficient systems, such as beryllium,1 magnesium2 or calcium derivatives acting as strong Lewis acids, with different kind of molecules, unavoidably lead to a drastic reorganization of the electron density distributions of both interacting systems, which is reflected in a sizable perturbation of their bonding patterns. Hence, these perturbations obviously alter the ability of both systems to interact with a third body. One direct consequence is that the strength and the characteristics of noncovalent interactions between two molecules, such as hydrogen bonds, halogen bonds, chalcogen bonds, etc. can be modified through the interaction of the corresponding complex with an electron-deficient compound.3, 4 However, although both interactions are perturbed, it can be trivially shown, using thermodynamic principles that the weakest is the one that becomes more reinforced. These electron redistributions can also be used to induce the appearance of σ-holes in systems that do not present this feature when isolated,5 to induce the spontaneous formation of ion-pairs,6 or to lead to an exergonic and spontaneous formation of radicals,7 by favoring the homolytic cleavage of different chemical bonds, or to dramatically enhance the acidity of conventional bases,8 changing them in superacids in the gas-phase.

  1. M. Yáñez, P. Sanz, O. Mó, I. Alkorta and J. Elguero, J. Chem. Theor. Comput., 2009, 5, 2763-2771.
  2. R. Tama, O. Mó, M. Yáñez and M. M. Montero-Campillo, Theor. Chem. Acc., 2017, 136, 36.
  3. L. Albrecht, R. J. Boyd, O. Mó and M. Yáñez, Phys. Chem. Chem. Phys., 2012, 14, 14540-14547.
  4. O. Mó, M. Yáñez, I. Alkorta and J. Elguero, J. Chem. Theory Comput., 2012, 8, 2293-2300.
  5. O. Brea, O. Mó, M. Yáñez, I. Alkorta and J. Elguero, Chem. Eur. J, 2015, 21, 12676-12682.
  6. M. Yáñez, O. Mó, I. Alkorta and J. Elguero, Chem. Phys. Lett., 2013, 590, 22-26.
  7. O. Brea, I. Alkorta, O. Mó, M. Yáñez, J. Elguero and I. Corral, Angew. Chem. Eng. Int. Ed.,2016, 55, 8736-8739.
  8. M. Yáñez, O. Mó, I. Alkorta and J. Elguero, Chem. Eur. J, 2013, 35, 11637-11643.