Prediction of Thermodynamic Stability in Hybrid Organic-Inorganic Elpasolites

Stephen Xie¹, Michael Sexton¹, Simon R. Phillpot¹, Jiangeng Xue¹, Richard G. Hennig¹

¹University of Florida, Department of Materials Science and Engineering, Gainesville, FL

Hybrid organic-inorganic perovskite materials have excellent photovoltaic properties and are inexpensive to synthesize, providing a promising route towards meeting the ever-growing energy demand of the world. Using density functional theory, we explore the thermodynamic stability of hybrid organic-inorganic "double" perovskite structures $[(CH_3NH_3)_2ABiX_6, A=monovalent cation, X=halide anion]$ to identify new lead-free materials. We show how combinatorial chemical substitution of existing perovskite-like materials in online materials databases leads to better-populated phase diagrams and improved formation energies using energy vs. composition convex hulls. Finally, we will discuss the use of machine learning to understand relationships between thermodynamic stability and composition-dependent attributes, such as electronegativity and ionic radii.