Covalent-Like Pi-Pi Bonding between Graphene Layers Enabled by Electron or Hole Dopings

Jingsong Huang ${ }^{1}$, Bobby G. Sumpter ${ }^{1}$, Yong-Hui Tian ${ }^{2}$, Xiaolan Sheng ${ }^{2}$, Kaixiong Tu ${ }^{3}$, Zhongfang Chen ${ }^{3}$, Miklos Kertesz ${ }^{4}$
${ }^{1}$ Center for Nanophase Materials Sciences and Computational Sciences \& Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
${ }^{2}$ College of Life Sciences, Research Center of Analytical Instrumentation, Sichuan University, Chengdu, Sichuan 610064, P. R. China
${ }^{3}$ Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, San Juan, PR 00931, United State
${ }^{4}$ Department of Chemistry, Georgetown University, $37^{\text {th }}$ and O Streets, NW, Washington, DC 20057, United States

Regardless of the stacking motifs, neighboring graphene layers are known to be separated at a distance corresponding to van der Waals (vdW) interactions. Herein we show that interlayer covalent-like pi-pi bonding between AA-stacked graphene layers can be realized by electron or hole dopings through N - or B -substitutions, respectively, by using rigorous theoretical calculations with density functional theory (DFT) containing empirical vdW corrections or self-consistent vdW functional methods, nonlocal many-body dispersion (MBD) method, and adiabatic-connection fluctuation-dissipation theorem (ACFDT) used in the direct random phase approximation (RPA). The pi-pi bonding manifests in the significantly enhanced interlayer binding energy and the correspondingly reduced interlayer separation. Such an unusual chemical bonding arises from the pi-pi overlap across the vdW gap while the individual layers maintain their in-plain pi-pi conjugation and therefore planarity. The presence of the interlayer pi-pi bonding is corroborated by electronic structure calculations and crystal orbital overlap population (COOP) analyses. Due to the interlayer pi-pi bonding interactions, AA-stacked bulk structures exhibit metallic characteristics both in the in-plane and along the stacking directions.

