Magnetic Properties of [Mn_n]Ce_m Clusters

<u>Dian-Teng Chen</u>¹, Xiang-Guo Li¹, Yun-Peng Wang¹, Xiao-Guang Zhang¹, George Christou², and Hai-Ping Cheng¹

¹Department of Physics and Quantum Theory Project, University of Florida, Gainesville, FL 32611 ²Department of Chemistry, University of Florida, Gainesville, FL 32611

Abstract

Manganese oxide single-molecule magnets [Mn_n] (with *n* up to 84) have attracted much attention in the last few decades. More recently, [Mn_n]Ce_m compounds have been synthesized. Using first-principles quantum calculation, we studied several [Mn_n]Ce_m clusters including Mn₃Ce₂ and Mn₅Ce₃ with three different ligands. Magnetization in these clusters is mainly from the Mn ions. The magnetic interaction between the Mn ions can be either ferromagnetic or antiferromagnetic. We investigated energies of all spin configurations for each molecule. We fitted the total energies from first-principles calculations to Heisenberg model and extracted the exchange parameters, *J*. The *J* values from first-principles calculations and *J*'s from the experimental susceptibility curve were compared. Pathways of magnetic interaction were analyzed using the Wannier function method.