W4 vs. Wn-F12 Theory: What Does Explicitly Correlated Coupled Cluster Theory Bring To The High-Accuracy Thermochemistry Table?

Jan M.L. Martin¹, Nitai Sylvetsky¹, and Manoj K. Kesharwani¹

¹Department of Organic Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel.

We consider whether it is worthwhile to replace the valence CCSD step in Wn theory by CCSD-F12b or CCSD(F12*) in smaller basis sets.¹ In order to have a better reference, we have recalculated the valence CCSD parts of the 200-molecule W4-17 thermochemistry benchmark² through extrapolation from the AV{6,7}Z+d basis set pair. In the process, we found that the AV{5,6}Z+d pair normally used in W4 theory suffers from radial overcontraction for some second-row elements. For systems dominated by dynamical correlation, the CCSD-F12b and CCSD(F12*) methods both come very close to the benchmark using the smaller V5Z-F12 basis set,³ drastically reducing mass storage and memory requirements compared to AV6Z+d. However, in molecules with strong static correlation like ozone or BN, not only does CCSD-F12b yield unacceptable errors even with basis sets as large as aug-cc-pwCV5Z, but even the more rigorous CCSD(F12*) exhibits significant differences from the CCSD limit. Through multiple perturbation theory analysis,⁴ we were able to trace these differences to fourth-order coupling terms between the orbital doubles and geminal amplitudes. Overall, CCSD(F12*) has the smoothest convergence.

¹ N. Sylvetsky, K.A. Peterson, A. Karton, and J.M.L. Martin, J. Chem. Phys. 144, 214101 (2016).

² A. Karton, N. Sylvetsky, and J.M.L. Martin, J. Comput. Chem. **38**, 2063 (2017).

³ K.A. Peterson, M.K. Kesharwani, and J.M.L. Martin, Mol. Phys. 113, 1551 (2015).

⁴ A. Köhn and D.P. Tew, J. Chem. Phys. **133**, 174117 (2010).