<u>Reducing the scaling of higher-order coupled cluster methods</u> through tensor decomposition techniques

Varun Rishi, Karl Pierce and Edward F. Valeev

Department of Chemistry, Virginia Tech, Blacksburg, VA

Abstract

It is shown that the use of tensor decomposition techniques like canonical product (CP) decomposition can lead to a formal reduction in the scaling of higher-level coupled cluster methods. We take coupled cluster singles, doubles and triples (full CCSDT) as an example and illustrate how higher-scaling terms in the residual equation can be treated, with possible reduction of operation complexity, with control over the error introduced with the reduced rank of the decomposed tensor.

References

- ¹ F. Hummel, T. Tsatsoulis, and A. Grüneis, JCP 146, 124105 (2017).
- ² R. Schutski, J. Zhao, T. M. Henderson, and G. E. Scuseria, JCP 147, 184113 (2017).

³T. G. Kolda and B. W. Bader, SIAM Rev. 51, 455 (2009).

⁴E. G. Hohenstein, S. I. Kokkila, R. M. Parrish, and T. J. Martinez, JCP 138, 124111 (2013).

⁵N. Shenvi, H. Van Aggelen, Y. Yang, W. Yang, C. Schwerdtfeger, and D. Mazziotti, JCP 139, 054110 (2013).

⁶U. Benedikt, A. A. Auer, M. Espig, and W. Hackbusch, JCP 134, 054118 (2011).