Noneradiative hot carrier capture cross section of defects in GaN from first principles

Jun Jiang,¹ Georgios D. Barmparis,² Sokrates T. Pantelides,^{3,4,5} and X.-G. Zhang^{1,*}

 ¹Department of Physics and the Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
²Crete Center for Quantum Complexity and Nanotechnology, Department of Physics, University of Crete, Heraklion 71003, Greece
³Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235, USA
⁴Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
⁵Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA (Dated: November 21, 2016)

Recent progress in first-principles calculations of multiphonon processes in solids^{1,2} allows direct calculation of nonradiative hot-carrier capture cross sections of defects in semiconductors. We apply the computational method in¹ to electron and hole capture cross sections of defects in GaN. As formulated, the method contains zeroth-order matrix elements for the phonon-assisted electron (or hole) transition, whose contribution is expected to be larger than the contributions of the usual, first-order, electron-phonon coupling matrix elements². The calculated cross sections are compared to the first-order results in² and to experiments.

ACKNOWLEDGMENTS

This work is supported by NSF grant 1508898

* Email: xgz@ufl.edu

¹ G. D. Barmparis, Y. S. Puzyrev, X.-G. Zhang, and S. T. Pantelides,

Physical Review B 92, 214111 (2015).

² A. Alkauskas, Q. Yan, and C. G. Van de Walle, Physical Review B **90**, 075202 (2014).