Fluctuating Stripes in 3-Band Hubbard models from DMRG and DQMC simulations

Thomas Devereaux

Stanford University

Upon doping, Mott insulators often exhibit translational symmetry breaking where charge carriers and their spins organize into patterns known as stripes. For high- T_c superconducting cuprates, a widely suspected notion has been that stripes exist in a fluctuating form. Here, we use numerically exact determinant quantum Monte Carlo (DQMC) and density matrix renormalization group (DMRG) calculations to demonstrate strong dynamical stripe correlations in the three-band Hubbard model, which represents the local electronic structure of a Cu-O plane in a cuprate superconductor. Our results, which are surprisingly robust to parameters, cluster size, and boundary conditions, strongly support the interpretation of a variety of experimental observations in terms of the physics of fluctuating stripes, including the hourglass magnetic dispersion and the Yamada plot of incommensurability vs. doping. These findings provide a novel perspective on the multitude of intertwined orders emerging out of the cuprates' normal state.