Pseudo-Gaussian Quantum Dynamics: Efficient Sampling of Potential Energy Surfaces for High-dimensional Quantum Molecular Dynamics

Charles W. Heaps and David A. Mazziotti

Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois, 60637, United States

Abstract

Quantum molecular dynamics requires an accurate representation of the molecular potential energy surface from a minimal number of electronic structure calculations, particularly for nonadiabatic dynamics where excited states are required. While trajectory-guided Gaussian basis sets have been very successful for studying high-dimensional quantum dynamics, in cases without an analytical potential energy surface the rate limiting step often becomes the electronic structure calculations. Therefore, we are interested in developing trajectory-based methods that minimize the number of potential energy evaluations while still accurately describing the quantum dynamics. We investigate a recently introduced method, pseudo-Gaussian dynamics, that achieves accurate quantum dynamics using efficient, real-space sampling of the time-dependent basis set. Unlike other Gaussian methods but similar to the pseudo-spectral method, the basis set is tested with N Dirac delta functions, where N is the number of basis functions, rather than using the basis function as test functions. The delta function reduces the evaluation of matrix elements to function evaluation. Pseudo-Gaussian dynamics only requires $\mathcal{O}(N)$ potential energy calculations, in contrast to $\mathcal{O}(N^2)$ evaluations in a variational calculation. We explore the accuracy of the pseudo-Gaussian method in single-surface calculations of up to six dimensions and in a two-dimensional non-adiabatic example. We find that the pseudo-Gaussian method is as accurate as the variational calculation despite requiring considerably less information of the potential energy surface. The implications of these results for future Gaussian-based work and the relationship of our method to existing literature will also be discussed.