Theoretical Studies of Damage-Free XFEL Structures of the $\mathbf{C a M n}_{4} \mathbf{O}_{5}$ cluster in Oxygen Evolving Complex of Photosystem II

M. Shojií ${ }^{\mathbf{z}^{*}}$ H. Isobe ${ }^{\text {b }}$, S. Yamanaka ${ }^{\text {c }}$, M. Suga ${ }^{\text {b }}$, F. Akita ${ }^{\text {b }}$, J.-R. Shen ${ }^{\text {b }}$, T. Nakajima ${ }^{\text {d }}$, K. Yamaguchi ${ }^{\text {d,e, }, w^{*}}$
${ }^{\text {a }}$ Center of Computational Sciences, Tsukuba University, Tsukuba, Ibaraki 305-8577, Japan
${ }^{\mathrm{b}}$ Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
${ }^{\text {c }}$ Graduate School of Science, Osaka University, Toyonaka, 560-0043
${ }^{\text {d }}$ Riken Advanced Institute for Computational Science, 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo, 650-0047
${ }^{\mathrm{e}}$ Institute for Nanoscience Design, Osaka University, Toyonaka, Osaka, 560-8531
${ }^{\mathrm{f}}$ Handairigaku Techno-Research, Toyonaka, Osaka 560-0043.

Very recently, Suga, Akita and Shen et al [1] determined damage-free structures of the oxygen evolving complex (OEC) of photosystem II (PSII) by using the X-ray free electron laser (XFEL) at $1.95 \AA$ A resolution. However, positions of hydrogen atoms were not determined. We theoretically examined the XFEL structures under the assumption of four protonation cases [2]. Spin densities calculated at the high-spin UB3LYP level revealed that the $\mathrm{Mn}-\mathrm{O}$ bonds entail a partial internal reduction by the high-valent Mn ions in the $\mathrm{CaMn}_{4} \mathrm{O}_{4} \mathrm{X}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Y}$ cluster and the $\mathrm{O}(5)(=\mathrm{X})$ site is considered to be protonated at the the S_{1} structure [1]. In this paper several key concepts and selection rules for the $\mathrm{Mn}-\mathrm{Mn}, \mathrm{Ca}-\mathrm{Mn}$ and $\mathrm{Mn}-\mathrm{O}$ distances of the $\mathrm{CaMn}_{4} \mathrm{O}_{5}$ cluster elucidated by our QM and $\mathrm{QM} / \mathrm{MM}$ calculations were examined for lucid understanding of the damage free S_{1} structure of OEC of PSII revealed by XFEL. A simple equation for estimation of the $\mathrm{Mn}_{\mathrm{a}}-\mathrm{Mn}_{\mathrm{b}}$ distance with the $\mathrm{Mn}_{\mathrm{a}}-\mathrm{O}_{(5)}$ bond length was derived in relation to the Jahn-Teller (JT) effect for the labile $\mathrm{Mn}_{\mathrm{a}}-\mathrm{X}-\mathrm{Mn}_{\mathrm{d}}$ bond ($\mathrm{X}=\mathrm{O}_{(5)}=$ oxygen dianion or hydroxide anion), indicating that the XFEL structure is regarded as a slightly right-elongated quasi-central structure in contradiction to a right-opened structure by the EXAFS.
[1] M. Suga et al, Nature DOI: 10.1038/nature13991 (2014).
[2] M. Shoji et al, chem. phys. lett. in press.

