Ab initio molecular dynamics of the electrocatalytic decomposition of hydrogen peroxide in the presence of a silver cluster

Riley Paulsen, Dmitri Kilin

Department of Chemistry, University of South Dakota, Vermillion, SD, 57069

The interest in H_2O_2 propulsion systems has rekindled because H_2O_2 is more environmentally friendly than alternative fuel propellants, has a high density to maximize the oxidizer-to-fuel ratio,¹ and is stored non-cryogenically.² For this work, an atomic model of seventeen gaseous H_2O_2 molecules in the vicinity of an Ag₁₃ cluster was explored by density functional theory utilizing the Kohn-Sham equation implemented in Vienna Ab initio Simulation Package for ground, excited, and ionized electronic configurations.³ The system was equilibrated to higher temperatures to induce trajectories of atomic positions for the duration of 100 fs.⁴ Molecular dynamics⁵ used to explore the mechanisms of H_2O_2 decomposition show that the Ag catalyst expedites the exothermic H_2O_2 decomposition into H_2O and O_2 by providing alternative intermediate pathways containing metastable radicals, which lower the activation energy. Figure 1 shows the donation of electrons by Ag to HO• after the dissociation of H_2O_2 , and form an unstable, intermediate H_3O_3 that quickly converts to H_2O .

Although the evolution of O_2 was not precisely observed in referenced simulation, we propose that HO• would accept the hydrogen from HO₂• to produce O_2 , and would likely be demonstrated in an expanded time interval. As a result of the insight into the mechanism of the catalytic decomposition of H₂O₂ from the molecular dynamics, this computational study could be essential in optimizing the conditions for the electrocatalytic decomposition and propulsion performance of H₂O₂.

 Wernimont, E. V., M.; Garbodwn, G.; Mullens, P., Past and Present Uses of Rocket Grade Hydrogen Peroxide. In *General Kinetics*, LLC Aliso Viejo, CA 92656, 1999.
Ak, M. A.; Ulas, A.; Sümer, B.; Yazıcı, B.; Yıldırım, C.; Gönc, L. O.; Orhan, F. E. *Fuel* 2011, *90* (1), 395-398.

- 3. Kresse, G.; Furthmüller, J. *Physical Review B* **1996**, *54* (16), 11169-11186.
- 4. <u>https://www.youtube.com/watch?v=0jPYemc-OX0&feature=youtu.be</u>.
- 5. Alavi, S. Angewandte Chemie International Edition 2009, 48 (50), 9404-9405.