H_2O_2 -Ng Dynamics Predictions Using an Accurate Potential Energy Surface

Luciano A. Leal, Luiz F. Roncaratti, Wiliam F. da Cunha, and Geraldo M. e Silva Instituto de Física, Universidade de Brasília, CP04455, Brasília, DF, CEP 70919-970, Brazil

Ricardo Gargano

Instituto de Física, Universidade de Brasília, CP04455, Brasília, DF, CEP 70919-970, Brazil, Departments of Chemistry and Physics, Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA*

Based on *ab initio* calculations, our research group has built an analytical ground-state potential energy surface (PES) for hydrogen peroxide-noble gas (Ng) interactions, such as H_2O_2 -He, H_2O_2 -Ne, H_2O_2 -Ar, H_2O_2 -Kr, and H_2O_2 -Xe complexes. It was verified in a previous study that the Ng presence does not affect the equilibrium values of the H_2O_2 dihedral angles. This happens because the H_2O_2 intramolecular barriers have much higher energies than the atom-bond interaction within these complexes. From this point of view, it is reasonable to consider the H_2O_2 system as a rigid rotor, frozen at its equilibrium configuration. To complete this previous study, we present in this work the torsional motion for the H_2O_2 isolated system, the vibration-rotation energy levels and spectrocopic constants for hydrogen peroxide-noble gas using the aforementioned PES. The predicted H_2O_2 torsional motions are in a good agreement with both theoretical and experimental results available in the literature (Table I). Regarding H_2O_2 -Ng ro-vibrational energies and spectrocopic constants, it is the first time that these calculations are presented in the literature. The current theoretical predictions are expected to be useful in the future experimental investigations.

TABLE I: Band frequencies (cm^{-1}) for H_2O_2 molecule. The differences among the experimental data (Exp1) and theoretical results are shown in parentheses.

Bands	Exp1.[1]	This work	Theor1.[2]	Theor2.[3]	Exp2.[4]	
B1	11.43	11.52(0.09)	11.28(0.15)	11.03(0.40)	11.4372	
B2	198.57	197.39(1.18)	199.13(0.56)	—	—	
B3	370.70	372.31(1.61)	-	371.37(0.67)	370.8932	
B4	557.84	558.18(0.34)	559.17(1.33)	-	-	

- [1] R. H. Hunt, R. A. Leacock, C. W. Peters, K. T. Hecht. J. Chem. Phys. 42, 1965, 1931.
- [2] R. Chen, G. Ma, H Guo, Chem. Phys. Lett. 320, 2000, 567.
- [3] P. Malyszek, J. Koput, J. Comput. Chem. 34, 2013, 337.
- [4] J. -M. Flaud, Camy-Peyret, J. W. C.Johns, B. Carli. J. Chem. Phys. 91, 1989, 1504.

^{*}Electronic address: gargano@unb.br