Structure of the One-electron Reduced Density Matrix in Quantum Mechanics from the Generalized Pauli Exclusion Principle

David A. Mazziotti Department of Chemistry James Franck Institute 929 E. 57th St. The University of Chicago Chicago, IL 60637 USA

The Pauli exclusion principle requires that the occupations of the orbitals lie between zero and one. These Pauli conditions hold for one-electron reduced density matrices (1-RDMs) from both open and closed quantum systems. More than 40 years ago, it was recognized that there are additional conditions on the 1-RDM for closed quantum systems. In this lecture we will discuss the structure of the 1-RDM from the generalized Pauli exclusion principle in many-electron atoms and molecules [1], the violation of the generalized Pauli principle as a sufficient condition for the openness of a many-electron quantum system [2], as well as connections to 1-RDM and geminal functional theories.

[1] R. Chakraborty and D. A. Mazziotti, "Generalized Pauli conditions on the spectra of oneelectron reduced density matrices of atoms and molecules," *Phys. Rev. A* **89**, 042505 (2014).

[2] R. Chakraborty and D. A. Mazziotti, "Sufficient condition for the openness of a many-electron quantum system from the violation of a generalized Pauli exclusion principle," *Phys. Rev. A* **91**, 010101(R) (2015).