Multiple order asymptotic expansion for approximation of atomic orbital electron repulsion integral

Tomonori Yamada, So Hirata
Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA

CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

We have developed an accurate, fast, and easily implemented approximation for atomic orbitalelectron repulsion integrals (AO-ERI's), which is called as asymptotic expansion (AE) [1]:

$$
\begin{align*}
(\mu \nu \mid \kappa \lambda) & =\iint d \boldsymbol{r}_{1} d \boldsymbol{r}_{2} \frac{\chi_{\mu}^{*}\left(\boldsymbol{r}_{1}\right) \chi_{\nu}\left(\boldsymbol{r}_{1}\right) \chi_{\kappa}^{*}\left(\boldsymbol{r}_{2}\right) \chi_{\lambda}\left(\boldsymbol{r}_{2}\right)}{\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|} \tag{1}\\
& \approx \frac{S_{\nu}^{\mu} S_{\lambda}^{\kappa}}{\left|\boldsymbol{r}_{\mu \nu}-\boldsymbol{r}_{\kappa \lambda}\right|} \tag{2}
\end{align*}
$$

Eq. (1) is an AO-ERI, and Eq. (2) is the AE, χ_{μ}^{*} is the μ th AO basis function, \boldsymbol{r}_{1} is the coordinate of electron $1, \boldsymbol{r}_{\mu \nu}$ is the average position of the centers of χ_{μ}^{*} and χ_{v}, and S_{ν}^{μ} is the overlap integral of χ_{μ}^{*} and χ_{v}. AE becomes more accurate when the distributions of two electrons are more distant to each other. This has been shown numerically in ref [1] and is also analytically proven by performing the Taylor expansion of Coulomb operator $1 / r_{12}$ in the Eq. (1) as follows.

$$
\begin{equation*}
\frac{1}{\left|r_{1}-r_{2}\right|} \approx \frac{1}{\left|r_{0}\right|}+\boldsymbol{r} \cdot \nabla_{r}\left(\frac{1}{\left|r_{0}+r\right|}\right)_{r=0}+\cdots \tag{3}
\end{equation*}
$$

Eq. (3) can be accurate if $\left|\boldsymbol{r}_{0}\right|>|\boldsymbol{r}|$. By taking \boldsymbol{r}_{0} as $\boldsymbol{r}_{\mu \nu}-\boldsymbol{r}_{\kappa \lambda}$, and considering only the first term of Eq. (3), Eq. (2) is obtained. Eq. (3) manifests that the accuracy of $A E$ is to be improved by including the second and higher order terms. In this work we implement AE including those higher order terms in a program of ab initio crystalline orbital Hartree-Fock theory, and show the actual improvements and efficiency of calculation for solid state systems. Note that the potential applicability of $A E$ is not limited to solid state systems but it is also applicable to large molecules where long range interactions cannot be ignored in AO-ERI's. Namely, AE can be an efficient method for calculations of large molecules such as proteins with ab initio molecular orbital theory.

References

[1] T. Yamada, R. P. Brewster, S. Hirata, J. Phys. Chem. 139 (2013) 184107. [2] L. Piela, J. Delhalle, Int. J. Quantum Chem. 13 (1978) 605. [3] J. Delhalle, L. Piela, J.-L. Brédas, J.-M. André, Phys. Rev. B 22 (1980) 6254.

