Theoretical Study of the adsorption of Acetone onto SiO₂,

TiO₂ and ZrO₂ Surfaces on the Basis of Ab Initio Hartree-

Fock Calculations

Muhammad A. Hasan^{a,*}, Mariam R. Abdallah^a, and Mohamed I. Zaki^b

^aChemistry Department, Faculty of Science, Kuwait University, P.O.Box 5969, Safat 13060, Kuwait

^bChemistry Department, Faculty of Science, Minia University, El-Minia 61519, Egypt

Abstract

An ab-initio quantum mechanical study of the adsorption of acetone on SiO₂, TiO₂ and

ZrO₂ surfaces is reported. Ab-initio Hartree-Fock calculations have been carried out using 3-

21G* and 6-31G(d) basis sets. Calculations show that Ac is weakly adsorbed on silica, resulting

in the formation of two differently H-bonded species:

(i) Ac bound to a single terminal Si-OH, and

(ii) Ac bound to 2 Si-OH groups.

Calculations for TiO₂ and ZrO₂ show that stronger adsorption of acetone occurs on TiO₂

than on ZrO₂. Calculations also reveal that there is a direct relationship between the net cationic

charge and the adsorption energy, as revealed by Mulliken population analysis. It is

demonstrated that increasing the cationic net charge results in an increase of the Lewis acidity of

the metal oxide. Calculations also show that TiO₂ possesses stronger Lewis acid sites than ZrO₂.

*) Corresponding author; Fax: +(965)4816482, Tel: +(965)9686945,

E-mail: the.mariam@hotmail.com (M.A. Hasan)