A Time-dependent Excited-state Molecular Dynamics Study of Lanthanide Cyclopentadienyl Complexes for Laser-assisted Metal-Organic Chemical-Vapor Deposition

Yulun Han, Qingguo Meng, Jiangchao Chen, P. Stanley May, Mary T. Berry and Dmitri S. Kilin

Department of Chemistry, University of South Dakota, Vermillion, SD 57069

Laser assisted metal-organic chemical-vapor deposition (LCVD) has many applications including preparation of high quality thin films.¹ In order to engineer the metal-organic precursors and to optimize the thin films prepared by LCVD, it is important to study the photofragmentation mechanisms of gas-phase metal-organic complexes in a laser field. A computational description of this process should focus on coupled dynamics of electrons and nuclei.² Theoretically, timedependent excited state molecular dynamics algorithm (TDESMD)³ has been used to explore and compare photodissociation mechanisms of tris(cyclopentadienyl)lanthanum, La(Cp)₃ and tris(isopropylcyclopentadienyl)lanthanum, La(iCp)₃. Quantum evolution of electronic states is coupled to evolution of nuclei in a classic path approximation. Specifically, optical driven electron hopping between the ground state and the ligand-to-metal charge transfer state facilitate dissociative evolution of nuclei. The simulation relies on first principles molecular dynamics perturbed by the periodic excitations and de-excitations of the model, during which the molecules could accumulate enough kinetic energy and overcome dissociation barrier. This algorithm is implemented in the basis of Kohn-Sham orbitals generated at each step of first principles molecular dynamics. The simulation produces atomic models of several products such as smaller molecules LaC_3H_3 and C_2H_2 upon photofragmentation during the given time of evolution. The simulation results agree well with the photofragmentation mechanisms proposed experimentally through photoionization time-of-flight mass spectrometry.⁴ Such simulations will help to interpret and predict photofragmentation of a broad class of metal-organic compounds for LCVD technique.

Reference:

⁽¹⁾ Meng, Q.; Witte, R. J.; Gong, Y.; Day, E. L.; Chen, J.; May, P. S.; Berry, M. T. *Chem. Mater.* **2010**, *22*, 6056.

⁽²⁾ Deumens, E.; Diz, A.; Longo, R.; Öhrn, Y. Rev. Mod. Phys. 1994, 66, 917.

⁽³⁾ Chen, J.; Meng, Q.; Stanley May, P.; Berry, M. T.; Kilin, D. S. *Mol. Phys.* **2013**, 1. **DOI:**10.1080/00268976.2013.845310

⁽⁴⁾ Chen, J.; Hochstatter, A.; Kilin, D.; May, P. S.; Meng, Q.; Berry, M. T. Organometallics 2013, Submitted.