Regional Electrophilic and Nucleophilic Fukui Functions Efficiently Highlight the Lewis Acidic/Basic Regions in Ionic Liquids.

Arie Aizman^a, Renato Contreras^b, Rodrigo Ormazabal^b and Andrea Cerda-Monje^b

^a Departamento de Química, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

^b Departamento de Química, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.

Abstract.

The origin of catalysis and selectivity induced by room temperature ionic liquids (RTIL) in several organic reactions, have putatively been associated with the concept of *cation effect* (Hydrogen bond donor ability of the RTIL) or *anion effect* (Hydrogen bond accepting ability of the RTIL). In this work we show that there may be cases where this *a priori* classification may not be correctly assigned. Cations may concentrate both Lewis acidity/basicity functions in one fragment of the RTIL, an effect we tentatively call bifunctional distribution of the molecular Lewis acidity/basicity. The molecular distribution of the Lewis acidity/basicity may simply be assessed by evaluating the corresponding regional electrophilic/nucleophilic Fukui functions within a reference ion pair structure. The model is tested for a set of 81 RTIL currently used to run a variety of organic reactions. The usefulness of the model for the design of task specific RTIL is discussed.

Acknowledgements: partial funding from Projects Fondecyt 1100644 and USM 131116 is gratefully acknowledged. This work was partially supported by Project ICM- P10-003-F CILIS, granted by Fondo de Innovación para la Competitividad del Ministerio de Economía, Fomento y Turismo, Chile