Transport on the mesoscale: Theory of space charge limited currents

Xiaoguang Zhang Oak Ridge National Laboratory

Space-charge-limited currents are important in energy devices such as solar cells and light-emitting diodes, but the available theory from the 1950's finds it necessary to postulate defect states that are distributed in energy in order to match data. This has prevented the theory to be used in extracting reliable defect information such as energy level and trap density from measurements. Here we revisit the theory and show that this postulate is not warranted. Instead, we demonstrate that dopants and the concomitant Frenkel effect, which have been neglected, control the shape of measured current-voltage characteristics. For highly disordered material, there is a significant inter-trap tunnelling current in the Ohmic regime, which accounts for the observed peak in the noise power. The new theory can anchor efforts to develop experimental techniques to measure deep-trap levels.

This research was conducted at the Center for Nanophase Materials Sciences, sponsored at ORNL by the Division of Scientific User Facilities.