Brueckner-based $\Lambda \mathbf{C C S D}(\mathrm{T})$ for Bond Breaking

Andrew G. Taube and Rodney J. Bartlett
Quantum Theory Project, University of Florida
P.O. Box 118435, Gainesville, FL 32611

For molecules near equilibrium, coupled-cluster theory with singles, doubles, and perturbative triples $[\operatorname{CCSD}(\mathrm{T})]$ is considered the standard. As one stretches a bond, the accuracy of $\operatorname{CCSD}(\mathrm{T})$ degrades rapidly. Recent work (1) showed that by modifying the $\operatorname{CCSD}(\mathrm{T})$ to include the effect of Λ (the de-excitation operator from CC gradient theory) one can improve the bond-breaking. This method, called $\Lambda \operatorname{CCSD}(\mathrm{T})$, maintains the advantages of $\operatorname{CCSD}(\mathrm{T})$, in particular extensivity and $O\left(N^{7}\right)$ computational scaling, and is equally good near equilibrium. Instead of exhibiting large energetic turnovers for bond-breaking of singly-bonded molecules, $\Lambda \operatorname{CCSD}(\mathrm{T})$ has at most a small (few millihartree) error along the potential energy surface (PES). For more complicated bonding situations, e.g. $\mathrm{N}_{2}, \Lambda \operatorname{CCSD}(\mathrm{~T})$ is not quantitatively accurate across the PES, with errors of more than 20 millihartree.

In our work with $\Lambda \operatorname{CCSD}(\mathrm{T})$, we noticed that while RHF $\Lambda \operatorname{CCSD}(\mathrm{T})$ is better than RHF $\operatorname{CCSD}(\mathrm{T})$, $\operatorname{UHF} \operatorname{CCSD}(\mathrm{T})$ and $\operatorname{UHF} \Lambda \operatorname{CCSD}(\mathrm{T})$ are almost identical. If one were able to produce a stable spin-restricted CCSD solution that was adequate to longer bond distances, then $\Lambda \operatorname{CCSD}(\mathrm{T})$ could improve the solution past the spin-re-coupling region. Brueckner orbitals are more stable than HF orbitals and when one combines the use instability analysis of the Brueckner orbitals (2) with the $\Lambda \operatorname{CCSD}(\mathrm{T})$ energy functional the results improve. While the RB solution is stable, the improvement of $\Lambda \operatorname{CCSD}(T)$ is substantial. Because the RB solution becomes unstable at bond distances beyond the spin-re-coupling region, the improper behavior of UHF $\Lambda \operatorname{CCSD}(\mathrm{T})$ is irrelevant. We applied the combination of Brueckner orbitals and $\Lambda \operatorname{CCSD}(\mathrm{T})$ to a variety of bonding situations. For N_{2} bond-breaking, the non-parallelity error is less than 10 millihartree out to twice the equilibrium bond length.

References

(1) A. G. Taube and R.J. Bartlett, J. Chem. Phys., submitted. S.A.Kucharski and R.J. Bartlett, J. Chem. Phys., 108, 5243 (1998). T. D. Crawford and J. F. Stanton, Int. J. Quantum Chem., 70, 601 (1998).
(2) J. Paldus, J. Čižek, and B. A. Keating, Phys. Rev. A, 8, 640 (1973).

