Phosphorescence spectra of dinuclear platinum(II) complexes: Relation between electronic structure of excited state and intersystem crossing

Ken Saito, Yoshihide Nakao, and Shigeyoshi Sakaki

Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Recently, phosphorescence spectra of dinuclear platinum(II) complexes have drawn a lot of interests. For instance, a pyrazolate-bridged platinum(II) complex $(1; \text{ Scheme } 1)^1$ with two bipyrimidines (bpyms) and a

pyridinethiolate-bridged complex $(2)^2$ with two phenylpyridines (ppys) exhibit interesting phosphorescence spectra. The phosphorescence of **1** is completely quenched in CH₃CN solution but observed in solid phase, while that of **2** is observed in both CH₃CN solution and solid phase. We wish to report geometries and electronic structures of the lowest energy singlet (S₁) and triplet (T₁) excited states of **1** and **2** and to clarify the reason of the difference in their phosphorescence spectra.

Geometries of **1** and **2** in the S_1 and T_1 states were optimized by the broken-symmetry DFT(B3PW91) and the usual DFT(B3PW91) methods, respectively. Spin–orbit interaction was evaluated with the one-electron part of the Breit–Pauli Hamiltonian with the CAS-CI wave function.

In CH₃CN solution, the electronic structure of **1** in the S₁ and T₁ states is assigned as the charge transfer excited state, where one-electron excitation occurs from the $d\sigma^*(Pt-Pt)$ antibonding orbital to the π^* orbital of bpym (Fig. 1). These $d\sigma^*(Pt-Pt)$ and $\pi^*(bpym)$ orbitals are delocalized on two Pt-bpym moieties. These S₁ and T₁ states take the C_{2v} symmetry. In solid phase, on the other hand, the electronic structures of **1** in the S₁ and T₁ states are characterized as the π - π^* excited state of

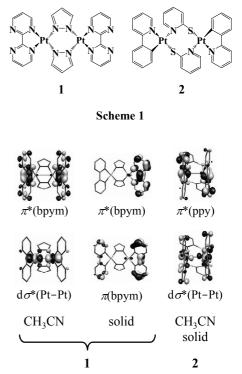


Fig. 1 Singly occupied molecular orbitals (SOMOs) in the S_1 and T_1 states of 1 and 2

bpym (Fig. 1). It is noted that these π (bpym) and π^* (bpym) orbitals are localized on one bpym. These S₁ and T₁ states take the C₁ symmetry. The spin-orbit interaction between the S₁ and T₁ states is zero in the C_{2v} symmetry but not equal to zero in the C₁ symmetry because of the symmetry of the one-electron part of the Breit-Pauli Hamiltonian. Thus, the S₁ \rightarrow T₁ intersystem crossing hardly occurs in CH₃CN solution, but it effectively occurs in solid phase. This is one of the reasons why the T₁ \rightarrow S₀ phosphorescence of **1** is completely quenched in CH₃CN solution but observed in solid phase.

The electronic structures of **2** in the S₁ and T₁ states are assigned as the charge transfer excited state in both CH₃CN solution and solid phase (Fig. 1). These S₁ and T₁ states take the C₂ symmetry, in which the spin-orbit interaction is present between the S₁ and T₁ states. Because the S₁ \rightarrow T₁ intersystem crossing easily occurs in both experimental conditions, the T₁ \rightarrow S₀ phosphorescence is observed in **2**.

⁽¹⁾ K. Umakoshi, Y. Kim, M. Onishi, S. Ishizaka, and N. Kitamura, private communication. (2) T. Koshiyama, A. Omura, and M. Kato, Chem. Lett. **33**, 1386 (2004).