Is the Wave Function Solely a Functional of the Density?

Xiao-Yin Pan^{1,2} and <u>Viraht Sahni</u>²

¹Department of Physics, Ningbo University, Ningbo 315211, China ²The Graduate School of the City University of New York, New York, New York 10016

The fundamental theorem of time-dependent(TD)/time-independent(TI) density functional theory (DFT) due to Runge-Gross(RG)/Hohenberg-Kohn(HK) proves the bijectivity between the density $\rho(\mathbf{r}t)/\rho(\mathbf{r})$ and the Hamiltonian H(t)/H to within a function C(t)/constant C, and the wave function $\Psi(\mathbf{X}t)/\Psi(\mathbf{X})$. (The proof is for arbitrary external potential operators that are *scalars*. Also implicit in the RG theorem is that the initial condition on the wave function $\Psi(\mathbf{X}t_0)$ is fixed.) As such, in DFT, the wave function is considered as being *solely* a functional of the density: $\Psi[\rho(\mathbf{r}t)]/\Psi[\rho(\mathbf{r})]$. Since the density $\rho(\mathbf{r}t)/\rho(\mathbf{r})$ is gauge invariant, the wave function as a functional of the density $\Psi[\rho(\mathbf{r}t)]/\Psi[\rho(\mathbf{r})]$, is also gauge invariant. However, it is well known that the Hamiltonian H(t)/H and the wave function $\Psi(t)/\Psi$ are gauge variant. There is, therefore, an inherent inconsistency in the RG/HK theorem.

In this paper we resolve this inconsistency in the RG/HK theorem via a unitary transformation or equivalently a gauge transformation. We thereby prove

- (i) The wave function $\Psi(\mathbf{X}t)/\Psi(\mathbf{X})$ in addition to being a functional of the density $\rho(\mathbf{r}t)/\rho(\mathbf{r})$ is also simultaneously a functional of a gauge function $\alpha(\mathbf{R}t)/\alpha(\mathbf{R})$. This then makes the wave function functional gauge variant.
- (ii) The unitary transformation generalizes the RG/HK theorem to Hamiltonians H(t)/H that in addition to the *scalar* external potential include the momentum operator and a curl-free *vector* potential operator.
- (iii) The transformation proves that the bijectivity is between the density $\rho(\mathbf{r}t)/\rho(\mathbf{r})$ of a physical system and the Hamiltonian representation of that system: the Hamiltonian H(t)/H and the Hamiltonians H(t) + C(t)/H + C *all* correspond to the *same physical system*. (Note that it is possible to construct [1, 2] an *infinite* number of Hamiltonians H(t)/H that differ by C(t)/C and correspond to *different physical systems*, but which all have the *same* density $\rho(\mathbf{r}t)/\rho(\mathbf{r})$.)
- (iv) The original RG/HK theorems then each constitute a special case of the more general description of the Hamiltonian.

Other understandings achieved by the transformation will also be discussed.

- 1. X.-Y. Pan and V. Sahni, Int. J. Quantum Chem. 95, 387 (2003).
- 2. V. Sahni, Quantal Density Functional Theory, Springer-Verlag, Berlin (2004).