Solving the Schrödinger equation of a few electron atoms and molecules with the free ICI VP method

Hiroyuki Nakashima and Hiroshi Nakatsuji
(http://qcri.or.jp/)
Quantum Chemistry Research Institute (QCRI), Kyoto, Japan
CREST, Japan Science and Technology Agency (JST), Japan
Graduate School of Engineering, Kyoto University, Kyoto, Japan

Schrödinger equation (SE) is the most important principle of chemical science. For solving the SE of general atoms and molecules, we proposed the free ICI (iterative-complement-interaction) method [1] and applied it to various systems. Here, we show some of the results obtained by combining it with the variational principle (VP). The free ICI method itself is applicable to any systems when its Hamiltonian is explicitly defined and can be extended for solving the relativistic Dirac-Coulomb equation [2].

1. He to B atoms: As previously reported, we performed the calculations of helium atom in fixed nucleus approximation (${ }^{\infty} \mathrm{He}$) and gave the best variational energy of -2.903 $724377034119598311 \mathbf{1 5 9} 245194404$ 44669690537 a.u. with 40 digits accuracy [3]. The same calculations were performed up to the five-electron B atom and molecules, which also showed very good convergence to the exact solutions.
2. Non Born-Oppenheimer calculations: We included nuclear motion as well as electron motion in the Hamiltonian and solved the SE. This represents "the nonrelativistic limit". For helium, the Hamiltonian contains the reduced mass: μ and the mass polarization term: $1 / m_{N} \cdot \nabla_{1} \cdot \nabla_{2}$. With the mass of nucleus (${ }^{4} \mathrm{He}$) of $m_{N}=7294.2995365$ (a.u.), the energy correct at least to 40 digits is -2.903 304557729580294733816943 89269775265927396 a.u. We have also calculated the energies of the helium iso-electronic atoms.
3. Excited states: The free ICI method is not limited to the ground state but is easily applicable to the excited states. Table I shows the excitation energies of helium atom with nucleus in motion (non-BO approximation). Compared with the experimental values, the differences were within 10^{-5} a.u. except for the lowest excited state and they reflect the physical effects not contained in the SE (QED and relativistic effects).
4. Hydrogen and helium atoms in strong magnetic fields: The free ICI method was applied to hydrogen and helium atoms in strong magnetic fields. Even in extremely strong magnetic fields like that existing in the neutron star $\left(10^{10}-10^{13} \mathrm{G}\right)$, the solution could be obtained quite stably. The energy of hydrogen atom in magnetic fields of $B=1$ (a.u.) was over 100 digits in accuracy!! Our theory would be a powerful tool to study the spectroscopy from astrophysical objects and determine the magnetic field strength of them.

Recently, we developed the Local Table I. Excitation energies of helium atom of $1 \mathrm{~s} N \mathrm{~s}$ states for singlet. Schrödinger equation (LSE) method [4] without doing analytic integrations. Therefore, we can apply the ICI methodology to general atoms and molecules without doing any integration.

References: [1] H. Nakatsuji, J. Chem. Phys. 113, 2949 (2000)., H. Nakatsuji, Phys. Rev. Lett. 93, 030403, (2004)., H. Nakatsuji, Phys. Rev. A 72, 062110 (2005). [2] H. Nakatsuji and H. Nakashima, Phys. Rev. Lett. 95, 050407, (2005). [3] H. Nakashima and H. Nakatsuji, J. Chem. Phys. in press. [4] H. Nakatsuij, H. Nakashima, Y. Kurokawa, A. Ishikawa, Phys. Rev. Lett. in press.

N	Free ICI (a.u.)	Exptl. (a.u.)	[Theory]-[Exptl.]
2	0.757625970149	0.7576157626	$\mathbf{0 . 0 0 0 0} 102075$
3	0.842315475381	0.8423061388	$\mathbf{0 . 0 0 0 0 0} 93366$
4	0.869996740248	0.8699881582	$\mathbf{0 . 0 0 0 0 0} 85821$
5	0.882404831556	0.8823963512	$\mathbf{0 . 0 0 0 0 0} 84803$
6	0.889017646545	0.8890092212	$\mathbf{0 . 0 0 0 0 0} 84253$
7	0.892954413278	0.8929460170	$\mathbf{0 . 0 0 0 0 0} 83963$
8	0.895486211526	0.8954778303	$\mathbf{0 . 0 0 0 0 0} 83812$
9	0.897210038953	0.89720155	$\mathbf{0 . 0 0 0 0 0} 84869$
10	0.898436428854	0.89842807	$\mathbf{0 . 0 0 0 0 0} 83569$
11	0.899339879169	0.89933146	$\mathbf{0 . 0 0 0 0 0} 84226$
12	0.900024574124	0.90001600	$\mathbf{0 . 0 0 0 0 0} 85738$
13	0.900555835611	0.90054772	$\mathbf{0 . 0 0 0 0 0} 81109$
14	0.900976305419	0.90096823	$\mathbf{0 . 0 0 0 0 0} 80766$
15	0.901314778506	0.90130667	$\mathbf{0 . 0 0 0 0 0} 81051$

