Density Functional Studies of C₆₀-Pd Nanostructure

Lan Li, Joey Nicely and Hai-Ping Cheng

Quantum Theory Project and Department of Physics, University of Florida, Gainesville Florida 32611, USA

Conductivity and hybridization of C_{60} -Pd nanostructure have been investigated using density functional calculations. From analysis of geometry, energetics and electronic structures, the interaction of C_{60} mono-layer and Pd clusters gives rise to electronic charge transfer at the interface and facilitates the dissociation and uptake of hydrogen, which lead to hydrogen storage. The first-principles studies are carried out by self-consistent plane-wave method. The interaction between ions and electrons is described by projector-augmented wave (PAW) approach. In our calculations, the C_{60} monolayer is doped by the Pd_n atoms on *h*-BN with *n* = 1-4 and 15, but it also forms a metal- C_{60} nano-array with the Pd clusters.

Charge transfer occurs at the interface, from the Pd atoms towards the C_{60} monolayer. This electronic property strongly depends on the nature and number of metal atoms, but also the type and strength of the interaction. A large amount of charge transfer between the Pd atoms and the C_{60} monolayer indicates a strong interaction under the ionic effect, in contrast with the interaction of the C_{60} monolayer and a metallic surface [1, 2]. The *h*-BN surface merely gains very few electrons (~ 0.1 electron/molecule) via C_{60} , proving that *h*-BN is an insulating material.

Pd is a good catalyst for dissociation and storage of hydrogen on the C_{60} molecules. Hydrogen is sufficiently dissociated in the presence of the Pd atoms/clusters, which assists in bonding of the individual H atoms to C_{60} . Dehydrogenation of $C_{60}H_x$ is also discussed in energetics.

[1] L-L Wang and H-P Cheng, Phys. Rev. B 69, 045404 (2004).
[2] L-L Wang and H-P Cheng, Phys. Rev. B 69, 165417 (2004).