High-Spin Versus Broken Symmetry – Effect of DFT Spin Density Representation on the Geometries of Two Diiron (II) Model Compounds.

R. C. Binning, Jr.¹ and Daniel E. Bacelo^{1, 2}

¹Department of Sciences and Technology, Universidad Metropolitana, P. O. Box 21150, San Juan, Puerto Rico 00928–1150, USA.

²Dpto. de Química, FCN, Universidad Nacional de la Patagonia San Juan Bosco, Km. 4, (9000) Comodoro Rivadavia, Chubut, Argentina

Abstract

Unrestricted density functional theory calculations have been conducted on two diiron(II) synthetic model compounds containing antiferromagnetically coupled high-spin irons for which crystallographic structures and Raman spectral data are available. Three density functionals have been employed: BPW91, PWC and BOP. The study compares the effects on optimized geometries and harmonic vibrational frequencies of high-spin and broken symmetry antiferromagnetically coupled singlet representations of the spin density distribution. The geometries around the diiron centers in the high-spin and broken symmetry representations are found to be similar, both markedly different from those arising from the spin-paired representation. Small differences between the high-spin and broken symmetry results are seen in bond lengths, angles, Raman frequencies and spin densities associated with oxo and peroxo bridges between the irons.