Explicitly-correlated combined coupled-cluster and perturbation methods

Toru Shiozaki,^{a,b} M. Kamiya, ^a So Hirata,^a and Edward F. Valeev^c

 ^a Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, FL 32611
^b Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Japan 113-8656
^c Department of Chemistry, Virginia Tech, Blacksburg, VA 24061

The so-called explicitly-correlated coupled-cluster methods (CC-R12) have been derived and implemented with up to quadruple excitations (CCSDTQ-R12) based on the complete diagrammatic equations. The efficient computer codes exploit spin, real-Abelian point-group, and index-permutation symmetries. They form a hierarchy of methods that converge rapidly to the full configuration interaction method at complete basis-set limit. We have also developed approximate methods that treat higher-order excitations with the Rayleigh–Schrödinger perturbation expansions, called CCSD-R12(2)_{*T*/*TQ*}, CCSD-R12(3)_{*T*}, CCSDT-R12(2)_{*Q*}, and CCSD(R12)(2)_{*T*/*TQ*}. The Λ -CCSD-R12, Λ -CCSD(R12), and Λ -CCSDT-R12 equations are implemented to realize those methods. They can describe the potential energy curves along single bond breaking quantitatively for the FH and H₂O molecules, and have uniform effectiveness in capturing basis-set truncation errors along the potential energy curves; for instance, the vibrational frequency of the FH molecule obtained by the CCSD-R12(2)_{*TQ*} and CCSDTQ-R12 methods using the aug-cc-pVDZ basis set are 3954 and 3953 cm⁻¹, respectively, and agree with the observed (3961 cm⁻¹) within 10 cm⁻¹, while that by the CCSDTQ method is 3881 cm⁻¹ which is far smaller.

This work has been supported partly by the U. S. Department of Energy (Grant No. DE-FG-02-04ER15621) and the JSPS Research Fellowship for Young Scientists.

^[1] T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, Phys. Chem. Chem. Phys. 10, 3358 (2008)

^[2] T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, J. Chem. Phys (Comm.) 129, 071101 (2008)

^[3] T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, submitted (2008)

^[4] T. Shiozaki, S. Hirata, and E. F. Valeev, in preparation