Relation between magnetization and internal energy in 3*d* ferromagnetic metals: experimental facts linked by a theoretical model appropriate for long-range exchange interactions

N. H. March

Department of Physics, University of Antwerp, Antwerp, Belgium Oxford University, Oxford, England Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

Abstract

Measurements of the magnetization M(T) and the specific heat allow one to relate $M(0) - M(T) \equiv \Delta M$ and $E(T) - E(0) = \Delta E$, where E(T) is the internal energy, for some 3*d* ferromagnetic metals. The early low temperature theoretical result of Grout and March that $\Delta E \propto \Delta M^{4/3}$ is thereby confirmed. Additional theory is reported over a wide temperature range using a model appropriate for long-range magnetic exchange interactions. The predictions of the model yield insight into the experimental relation between magnetization and internal energy over a wide temperature range.