
Quantum Balancing: Entropy and Intermolecular Dynamics of CO₂ Captured in Green Solvents

Jacek Jakowski, Jingsong Huang, Syed Z. Islam, and David S. Sholl

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Deep eutectic solvents (DES) such as reline are an emerging class of low-cost, environmentally friendly solvents with tunable properties that are potentially applicable for capture and separation of CO₂. Experimental measurements showed that a reline-based membrane contactor can capture

and separate CO₂ via physisorption through a dissolution process with 96.7% purity from a mixed gas containing CO_2 and N_2 (50% : 50% molar ratio)[1]. We examine the nature of interaction of CO₂ and N₂ with reline employing quantum chemical methods^[2]. We focus on explaining the mechanism by which CO₂ and N₂ bind to reline and the nature of high selectivity for absorption of CO₂ compared to N₂. We analyze the dynamics, energetics, and binding motifs for CO₂ and N₂ in reline employing Functional Theory Density (DFT), Density Functional Tight Binding (DFTB), and ab initio molecular dynamics (AIMD). We also investigate

the effect of reline on vibrational spectra of CO_2 and reline. Our simulations indicate that the selective capture of CO_2 from the mixture of CO_2 and N_2 is due to the interplay between attractive electrostatic and charge polarization forces with the opposing entropic effects which shift the energetic balance and makes the N_2 absorption unfavorable in reline.

[1] S. Islam, A. Arifuzzaman, G. Rother, V. Bocharova, R. Sacci, J. Jakowski, J. Huang, I. N. Ivanov, R. R. Bhave, T. Saito, D. Sholl, *A Membrane Contactor Enabling Energy-efficient CO₂ Capture from Point Sources with Deep Eutectic Solvents*, Ind. & Eng. Chem. Res. (2023) 62, 10,4455-4465 [DOI: 10.1021/acs.iecr.3c00080]

[2] Jacek Jakowski, Jingsong Huang, Syed Z. Islam, David S. Sholl, "Quantum Chemical Simulations of CO2 and N2 Capture in Reline, a Prototypical Deep Eutectic Solvent", J. Phys. Chem. B, (2023), 127, 8888-8899 [doi: 10.1021/acs.jpcb.3c02174]