Convergent ab initio Study of BH3 Electron Attachment

Peter R. Franke,¹ Thomas Sommerfeld,² and John F. Stanton¹

¹Department of Chemistry, University of Florida, Gainesville, FL, 32611 ²Department Chemistry and Physics, Southeastern Louisiana University

The lowest energy anion of BH₃ has previously been studied by photoelectron spectroscopy and matrix isolation infrared absorption spectroscopy.¹⁻² However, a theoretical description of the anion is deceptively challenging. Previous work has found the anion to be unstable to electron detachment in the vicinity of its D_{3h} minimum energy structure—becoming stable at stretched D_{3h} geometries. Only upon correction for zero-point vibrational energy (ZPVE), does the anion fall energetically below the neutral.³ In this work, BH₃ is studied with EOM-EA-CC methods up to CCSDTQP, predicting its adiabatic electron affinity and photoelectron spectrum. Particular attention is given to converging the critically-important ZPVE with respect to expansion of the basis set (both in diffuseness and angular momentum).

References

- (1) Wickham-Jones, C. T.; Moran, S.; Ellison, G. B. Photoelectron spectroscopy of BH₃⁻.J. *Chem. Phys.* **1989**, *90*, 795-806.
- (2) Lin, M.-Y.; Huang, T.-P.; Chin, C.-H.; Wu, Y.-J. Formation and Identification of Borane Radical Anions Isolated in Solid Argon. *J. Chem. Phys.* **2018**, *148*.
- (3) Gutsev, G.; Bartlett, R. Electron Affinity of CH₃ and BH₃ and Structure of Their Anions. *Pol. J. Chem.* **1998**, *72*, 1604-1614.