Equation-of-motion internally contracted multireference

unitary coupled-cluster theory

Shuhang Li, Zijun Zhao, Francesco A. Evangelista

Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, USA

The accurate computation of excited states remains a challenge in electronic structure theory, especially for strongly correlated systems. In this paper, we present a novel extension of the equation-of-motion coupled-cluster theory, founded upon an internally contracted multireference unitary coupled-cluster singles-and-doubles framework (ic-MRUCCSD), namely EOM-ic-MRUCC. EOM-ic-MRUCC follows the transform-then-diagonalize route, like its non-unitary counterpart (MR-EOMCC) formulated by Datta and Nooijen [J. Chem. Phys. **137**, 204107 (2012)]. In EOM-ic-MRUCC, the transform step captures all dynamical correlation for the parent state, making the ground state energy size-extensive. Three excitation manifolds were tested in the subsequent diagonalization step. We found that size-intensive excitation energies can be achieved if all excitation operators satisfy the vacuum annihilation condition. Excitation energy curves of the BeH₂ model system and the symmetric dissociation of the water molecule deviate from the full configuration-interaction results by less than 2 mE_h for excited states within 0.5 E_h of the ground state.