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In the present work we established an accurate and efficient computational tool that 

synergistically utilizes deep learning and quantum chemistry and predicts electronic 

structures and provides design principles for real-life functional materials like metal-

organic frameworks (MOFs) and organic semiconductors (OSC). Density functional 

theory (DFT) has been a long-standing workhorse for evaluating electronic structures 

of these materials, but its computational complexity remains a great challenge for large 

systems with more than hundreds of atoms, even with significant approximation like 

many-body expansion (MBE). Here we integrated frontier graph neural network (GNN) 

models into the MBE theory to control the computational complexity and evaluated the 

high-dimensional ground- and excited-state potential energy surface for important 

functional materials. Technically, we broke down these materials into small repeating 

fragments, evaluated one-fragment energies using DFT but acquired two-fragment 

interactions and beyond based on GNN-trained structure–property relationships. The 

preliminary application of GNN-MBE on small organic molecules showed a 

remarkable reduction in the computational cost without compromising the accuracy and 

demonstrated a significant enhancement in both the performance and interpretability of 

GNN models in chemical systems. Leveraging the accuracy of DFT and the efficiency 

of GNN, the development of GNN-MBE marks a significant step towards 

computationally aided material design. 


