Rank-Reduced representations of the connected triples in Coupled Cluster theory

Tingting Zhao and Devin Matthews

Southern Methodist university, Dallas, TX

Coupled cluster (CC) has proven to be one of the most successful quantum chemical methods, however, it is plagued by the presence of high-rank tensors: the two-electron integrals and the T (cluster) amplitudes. This high dimensionality leads to steep polynomial scaling. Reducing the scaling via rank- reduction presents two main difficulties: the lack of a clear prescription for the factorized (rank-reduced) form of the T amplitudes, and the complexity and extreme nonlinearity of the rank-reduced coupled cluster equations. Despite these difficulties, many methods have been proposed, such as the singular- value decomposition coupled cluster with triple excitations (SVD-CCSDT) of Lesiuk, and the rank-reduced coupled cluster method of Parrish et al. (RR-CCSD and related methods). We discuss recent developments connecting rankreducing factorizations of the integrals and doubles amplitudes (as in density fitting/resolutionof-the-identity and RR-CCSD), a Tucker-decomposed form of the triples amplitudes (as in SVD-CCSDT), and robust Approximation. We also explore graph-based diagrammatic techniques and knowledge-based algorithmic search through the Design-by-Transformation methodology in order to produce optimal working equations. Such automated techniques also enable new methods beyond the complexity of hand-derivation such as rank-reduced CCSD(T), SVD-CCSDTQ, etc. Reduced-scaling implementations of such methods will enable new model chemistries suitable for accurate thermochemistry (at the ~1kJ/mol scale) of molecules with as many as 12 first- or second-row atoms.