Cavity quantum electrodynamics via time-dependent configuration interaction theory

Jared D. Weidman, Inga S. Ulusoy, and Angela K. Wilson

Department of Chemistry, Michigan State University East Lansing, MI 48824, USA

Resonances between an electronic excitation in a molecule and a photonic mode of a cavity produce hybrid electron-photon states, known as polaritonic states, which have a number of useful photochemical properties. We implement the effects of a resonant cavity into the time-dependent configuration interaction (TDCI) method to model strong light-matter interactions. The TDCI method is a real-time quantum electron dynamics method based on an expansion of the timedependent wavefunction in the time-independent CI eigenstates. Transitions between states are induced via an external electric field, and the effects of a resonant cavity are introduced via a model Hamiltonian. This method is used to study the cavity-induced dipole-switching dynamics in small polar molecules.