Scattering solution of interacting Hamiltonian for electronic control of molecular spin qubits

Christian Bunker¹, Silas Hoffman¹, Jie-Xiang Yu², Xiao-Guang Zhang¹, and Hai-Ping Cheng¹

¹Department of Physics, Center for Molecular Magnetic Quantum Materials, and Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA ²School of Physical Science and Technology, Soochow University, Suzhou, China

We theoretically study how a scattered electron can entangle molecular spin qubits (MSQs). This requires solving the inelastic transport of a single electron through a scattering region described by a tight-binding interacting Hamiltonian. We accomplish this using a Green's function solution. We can model realistic physical implementations of MSQs by parameterizing the tight-binding Hamiltonian with first-principles descriptions of magnetic anisotropy and exchange interactions. We find that for two-MSQ systems with inversion symmetry, the spin degree of freedom of the scattered electron offers probabilistic control of the degree of entanglement between the MSQs.