Evaluation of DFT Methods for the Evaluation of Open-Shell Transition Metal Reaction Energies and Barrier Heights

Mark A. Iron

Computational Chemistry Unit, Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 7610001, Israel

Ever since 1831 when Zeise prepared the first organometallic complex (potassium trichloro(ethylene)platinate(II)),¹ transition metal complexes have found key roles in many processes. The reaction behaviour of transition metal complexes is remarkably different from traditional organometallic complexes, and a clear understanding of their reaction mechanisms is essential. DFT has found itself as an essential tool in this endeavour, but a key question is which of the alphabet of exchange–correlation functionals to use. For closed-shell reactions, Hansen *et al.* have presented their MOR41 benchmark set of transition metal reactions² while I have presented my MOBH35 benchmark set of reaction energies and barrier heights.³⁻⁴ Open-shell reactions are more complicated, yet Hansen and coworkers have reported their ROST61 benchmark set of open-shell reactions.⁵ Here, I will present my latest work in benchmarking open-shell transition metal reaction energies and barrier heights, the complement to ROST61.

3. Iron, M. A.; Janes, T. Evaluating Transition Metal Barrier Heights with the Latest DFT Exchange– Correlation Functionals – the MOBH35 Benchmark Dataset. *J. Phys. Chem. A* **2019**, *123*, 3761-3781.

4. Iron, M. A.; Janes, T. Correction to "Evaluating Transition Metal Barrier Heights with the Latest Density Functional Theory Exchange–Correlation Functionals: The MOBH35 Benchmark Database". *J. Phys. Chem. A* **2019**, *123*, 6379-6380.

5. Maurer, L. R.; Bursch, M.; Grimme, S.; Hansen, A. Assessing Density Functional Theory for Chemically Relevant Open-Shell Transition Metal Reactions. *J. Chem. Theory Comput.* **2021**, *17*, 6134-6151.

^{1.} Zeise, W. C. Von der Wirkung zwischen Platinchlorid und Alkohol, und von den dabei entstehenden neuen Substanzen. *Annalen der Physik und Chemie* **1831**, *97*, 497-541.

^{2.} Dohm, S.; Hansen, A.; Steinmetz, M.; Grimme, S.; Checinski, M. P. Comprehensive thermochemical benchmark set of realistic closed-shell metal organic reactions. *J. Chem. Theory Comput.* **2018**, *15*, 2596-2608.