Theoretical estimation of scattering loss rates in ColdAtom traps for novel Ultra-High-Vacuum sensors

Jacek Kłos
Joint Quantum Institute, Department of Physics, University of Maryland, College Park, MD 20742

A new pressure sensor for Ultra-High-Vacuum (UHV) has been built at the National Institute of Science and Technology (NIST) ${ }^{[1]}$. The development of these devices relies on ensembles of trapped and laser-cooled ${ }^{7} \mathrm{Li}\left({ }^{(2} \mathrm{S}\right)$ or ${ }^{87} \mathrm{Rb}\left({ }^{(} \mathrm{S}\right)$ atoms at tens of micro-Kelvin temperature. The sensors will allow measurements of extremely low UHV pressures, for which current pressure sensors based on a hot wire are not reliable. Trapped cold atoms encounter residual room-temperature atomic and molecular gases in the vacuum system, which result in cold atom losses with near 100% efficiency. One needs accurate knowledge of collisional rate coefficients to convert measured cold-atom loss rates into measurements of pressure. We present recent results ${ }^{[2]}$ of quantum scattering calculations using high-quality ab-initio potentials computed with the current gold-standard coupledcluster method. We find temperature-dependent elastic rate coefficients between cold atomic ${ }^{7} \mathrm{Li} /{ }^{87} \mathrm{Rb}$ and room-temperature noble gases and molecular nitrogen and hydrogen. We also describe initial efforts on extending our calculations to $\mathrm{CO}\left({ }^{1} \Sigma^{+}\right), \mathrm{O}_{2}\left({ }^{3} \Sigma_{\mathrm{g}}^{-}\right)$and also polyatomic molecules such as $\mathrm{CO}_{2}\left({ }^{1} \Sigma^{+}\right)$. Scattering calculations are performed by solving quantum close-coupling equations for all collision energies necessary to converge thermalized rate coefficients for temperatures up to room temperature. The computed loss-rates can be compared to experimental results obtained at NIST. We also estimate the uncertainties of the elastic rate coefficients associated with the uncertainty in the ab-initio potentials and due to omitted relativistic effects.
[1] L. Ehinger, B. Acharya,D. S. Barker, J. A. Fedchak et al. https://arxiv.org/pdf/2204.03705.pdf
[2] J. Kłos and E. Tiesinga, J. Chem. Phys. (2022); https://doi.org/10.1063/5.0124062

