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Nonunitary theories are commonly seen in the 
classical simulations of quantum systems. Among 
these theories, the method of moments of coupled 
cluster equations (MMCCs) and the ensuing classes 
of the renormalized coupled cluster (CC) approaches 
have evolved into one of the most accurate 
approaches to describe correlation effects in various 
quantum systems. The MMCC formalism provides an 
effective way for correcting the energies of 
approximate CC formulations (parent theories) using 
moments, or CC equations, that are not used to 
determine approximate cluster amplitudes. In this 
paper, we propose a quantum algorithm for 
computing MMCC ground-state energies that 
provides two main advantages over classical 
computing or other quantum algorithms: (i) the 
possibility of forming superpositions of CC moments 
of arbitrary ranks in the entire Hilbert space and using 
an arbitrary form of the parent cluster operator for 
MMCC expansion, and (ii) significant reduction in the number of measurements in quantum simulation 
through a compact unitary representation for a generally nonunitary operator. We illustrate the robustness 
of our approach over a broad class of test cases, including ∼40 molecular systems with varying basis sets 
encoded using 4–40 qubits, and we exhibit the detailed MMCC analysis for the 8-qubit half-filled, four-
site, single impurity Anderson model and the 12-qubit hydrogen fluoride molecular system from the 
corresponding noise-free and noisy MMCC quantum computations. We also outline the extension of the 
MMCC formalism to the case of a unitary CC wave-function Ansatz 
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Figure 2. (a,b) Numbers of Pauli terms (NPaulis) and corresponding numbers of unitary groups (NUnitaries) determined from the SR-guided
unitary partitioning approach for the approximate expansion of hYCCSD| and |YCCSDi of 1D, 2D, and 3D hydrogen systems encoded
using up to 20 qubits. The expansions of the left and right CCSD wave functions are shown in Eqs. (23) and (24). In these hydrogen
systems, the nearest H�H distance is 1.5 Å. The fitting curves (orange and green dashed lines) are line functions, y = kx+ c, where k

and c are fitting coefficients. (c,d) The NUnitaries/NPaulis ratios for hYCCSD| and |YCCSDi of a wider class of quantum molecular systems
encoded using up to 40 qubits. Ratios for a series of 20 qubit systems studied are shown in histograms in the insets. The fitting curves
take the expression, logy = a logx+b, where a and b are fitting coefficients.

B. MMCC quantum simulation of single-impurity
Anderson model

With our proposed SR-guided unitary partitioning ap-
proach, we are now able to target non-unitary calculations
through quantum simulations. Our first demonstration is
to prepare a conventional CC ansatz for a half-filled, four-
site, single impurity Anderson model (SIAM) system. The
general SIAM Hamiltonian reads

HSIAM = Himp.+Hbath +Hhyb., (34)

where

Himp. = Â
s

ecc
†
s cs +Uc

†
"c"c

†
#c# (35)

describes the impurity-site energy ec and the Coulomb inter-
action U between the electrons with opposite spins (s ="

or #) at the impurity site,

Hbath =
Nb

Â
i=1,s

ed,id
†
i,s di,s (36)

describes the non-interacting bath site with ed being the
bath-site energies, and

Hhyb. =
Nb

Â
i=1,s

Vi

�
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†
s di,s +d

†
i,s cs

�
(37)

describes the coupling between the impurity site and the
bath levels due to hybridization. Here, we only consider
symmetric four-site SIAM with ec =�U

2 . For the four-site
SIAM, there are a total of eight spin-orbitals, which are
then mapped to eight qubits for quantum simulation. The
initial electronic configuration is |10101010i. In the present
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the numerator of Eq. (6) (with |YT i replaced by |Yi)

E =
hY|eT

(A)
M
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hY|eT (A) |Fi
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(A) +

hY|eT
(A)

QRM
(A)|Fi

hY|eT (A) |Fi
, (9)

where the last term on the right-hand side of Eq. (9) gives
the algebraic form of the correction that needs to be added
to E

(A) to recover the exact energy E. For this reason, this
error formula was used to define approximate non-iterative
forms of corrections to improve the quality of the E

(A)

energies. For non-trivial forms of the corrections, the trial
wave functions have to incorporate excitations from the QR

sub-space. In the derivation of Eq. (9), we also assumed
that the cluster amplitudes defining T

(A) are obtained by
solving CC equations

QAM
(A)|Fi= 0 . (10)

Other scenarios, where one uses other sources for evaluat-
ing T

(A) amplitudes, are also possible. In such situations,
all QAM

(A)|Fi terms have to be included in the numerator
of Eq. (9).

In the last two decades, several variants of the MMCC
or renormalized CC methods involving various sources of
the trial wave functions and different rank moments have
been tested in challenging situations corresponding to bond-
breaking and bond-forming processes where standard per-
turbative approaches such as CCSD(T) or CCSD(TQ) meth-
ods tend to provide non-physical shapes of ground-state
potential energy surfaces (PESs). It was demonstrated that
the renormalized CC methods could significantly improve
the quality of these methods, especially for quasidegenerate
electronic states. One of the most efficient formulations of
renormalized CC methods uses a special form of the trial
wave function originating in the bi-variational character of
the CC theory,13,152 i.e.,

hYT |= hF|LT e
�T

(A)
, (11)

where LT is the trial left de-excitation operator defined as

LT = 1+
N

Â
n=1

LT,k. (12)

Here
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are the k-body components of LT . Eqs. (12) and (13) lead
to a very simple, denominator-free form of the asymmetric
energy functional

E[LT ] = hF|LT M
(A)|Fi . (14)

This class of renormalized CC methods (termed CR-
CC(m,n)144,153 approximations) along with the older

MMCC formulations based on the numerator-denominator
expansion140 are size-consistent, thus providing proper (ad-
ditive) separability of the energies of composite systems
in the non-interacting limit. This fact plays a key role in
describing chemical reactions and in proper descriptions of
systems in the thermodynamic limit.

III. MMCC QUANTUM ALGORITHM

Note that the MMCC formulations employing either uni-
tary or non-unitary CC ansatze can be evaluated using clas-
sical computers by treating tensor contractions, while the
unitary is best for quantum computation. In this section,
we outline the main features of the quantum algorithm for
calculating standard moment corrections (4), in particular,
treating the non-unitary cases. We will entirely focus on
the standard MMCC formulations to emphasize critical
steps defining the algorithms. The extensions to alternative
ansatzes (for example, UCC ansatz) can be achieved in a
similar way (see Appendix A). In contrast to the algorithms
used for calculating moments on classical computers, we
will assume a different strategy. Instead of calculating the
connected form of the moments given by Eq. (7) directly,
we will represent the following vectors (needed to calculate
the MMCC correction) as a sum of Pauli strings, Ps, or gen-
eral unitaries, Ul , (see the following section for technical
details):

e
T
(A) |Fi ! |Wi=

 

Â
l

wlUl

!
|Fi , (15)

He
T
(A) |Fi ! |Gi=

 

Â
l

glUl

!
|Fi , (16)

|YT i ! |Qi=
 

Â
l

qlUl

!
|Fi (17)

where H = Âl hlUl and coefficients {gl} depend on coeffi-
cients {wl} and {hl}. Calculating MMCC requires measur-
ing two overlaps

hQ|Gi and hQ|Wi (18)

which can be obtained by using the Hadamard-type mea-
surement for expectation values of the products of unitaries
(which are also unitaries). There are several advantages of
this algorithm:

• The non-normalized state |Gi contains superposition
of moments of all ranks, defining the expression
e

T
(A)

M
(A)|Fi (see second line in Eq. (6)). In the

typical implementation of renormalized CC methods,
one deals with low-rank methods, for example triply
and quadruply excited moments for T

(A) defining the
CCSD approach. In this sense, our proposed quan-
tum algorithms enable introduction of new classes
of MMCC formulations that include all possible CC
moments.

• The discussed representation can be used to calcu-
late moments corresponding to any form of T

(A),

Pre-Processing
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where H = Âl hlUl and coefficients {gl} depend on coeffi-
cients {wl} and {hl}. Calculating MMCC requires measur-
ing two overlaps

hQ|Gi and hQ|Wi (18)

which can be obtained by using the Hadamard-type mea-
surement for expectation values of the products of unitaries
(which are also unitaries). There are several advantages of
this algorithm:

• The non-normalized state |Gi contains superposition
of moments of all ranks, defining the expression
e

T
(A)

M
(A)|Fi (see second line in Eq. (6)). In the

typical implementation of renormalized CC methods,
one deals with low-rank methods, for example triply
and quadruply excited moments for T

(A) defining the
CCSD approach. In this sense, our proposed quan-
tum algorithms enable introduction of new classes
of MMCC formulations that include all possible CC
moments.

• The discussed representation can be used to calcu-
late moments corresponding to any form of T

(A),
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qubit CC ansatzes,134 where instead of explicit Fermionic
construction of the unitary coupled cluster (UCC) ansatz,
one builds directly in the qubit space.

We believe that analogous ideas may be employed to
implement quantum algorithms for a broad class of MMCC
methods based on the flexible forms (either unitary or non-
unitary) of the wave operator. In this direction, one of the
major hurdles is to encode the non-unitary operator on quan-
tum computers that only accept unitary forms. Typically,
an arbitrary non-unitary operator (mainly the Fermionic
operator in the present discussion) can be transformed into
a linear combination of Pauli terms. Since each Pauli term
is a unitary operation, this is the basic version of a linear
combination of unitaries. If considering a fault-tolerant
implementation with favorable resource scaling, a general
non-unitary operator can be encoded through a linear com-
bination of unitaries technique,135 amplitude amplification
approach,136 Hamiltonian simulation,132 qubitization,137

or the direct block-encoding138 methods at the cost of in-
troducing deeper circuit and implementing controlled-Û
operations, which nevertheless come with a probability of
failure and require advanced circuit and error mitigation
that might go beyond the capability of the current NISQ
devices.

Toward a more feasible NISQ approach, Izmaylov et al.
proposed a unitary partitioning scheme139 using numerical
graph analytic tools to pre-process a linear combination of
Pauli terms for their equivalent encoding on a quantum cir-
cuit. In light of this approach, here we propose a more effi-
cient unitary partitioning approach guided by the SR used in
the simulation. In particular, we found that the non-unitary
wave operator when acting on a SR trial wave function can
be represented by a much more compact unitary basis, thus
provides a more efficient route for performing the general
non-unitary quantum simulations. Based on this observa-
tion, we further propose a quantum algorithm for measuring
renormalized CC energies corresponding to approximate
CC formulations with a non-unitary wave operator on quan-
tum computers. Our quantum algorithm exhibits two main
advantages over classical computing or other quantum al-
gorithms: (i) it provides a framework for introducing new
classes of MMCC formulations that includes all possible
CC moments corresponding to flexible forms of the trial
wave function; and (ii) the compact unitary representation
of a general non-unitary operator significantly reduces the
number of measurements in quantum simulation.

This paper is organized as follows. Section II will briefly
review the MMCC formulation. Section III will detail our
proposed quantum algorithm for computing the MMCC en-
ergy. In Section IV, we will first briefly review the original
unitary partitioning approach, and test its numerical perfor-
mance over a broad range of molecular systems. We then
detail our proposed unitary partitioning approach and give
some preliminary comparison with respect to the original
approach. More comprehensive numerical demonstrations
of our unitary partitioning approach and the associated
quantum algorithm are given in Section V, where the quan-
tum simulations are conducted for a wide range of molecu-
lar systems in both noise-free and noisy environments. We
will conclude this paper in Section VI, where some future
developments will also be briefly discussed.

II. MANY-BODY FORMULATION OF THE METHOD
OF MOMENTS OF COUPLED CLUSTER EQUATIONS

The MMCC equations and ensuing class of renormal-
ized CC formalisms87–89,92–94,140–151 have evolved into one
of the most accurate methodologies for the high-precision
evaluation of ground-state energies for chemical and nu-
clear systems. The idea of the MMCC approach is based
on the asymmetric energy functional

EMMCC[YT ] =
hYT |He

T
(A) |Fi

hYT |eT (A) |Fi
(4)

where |YT i is the so-called trial wave function, T
(A) is

an arbitrary approximation (the parent approach) to the
exact cluster operator T , and H is a many-body Hamil-
tonian defined by one- and two-body interactions. The
word “asymmetric” here refers to the the trial wave func-
tion hYT | and the wave function T

(A) |Fi are not complex
conjugates of each other. When |YT i is replaced by the
exact ground-state wave function |Yi, then the value of the
MMCC functional obtained from Eq. (4) is equal to the
exact ground-state energy E;

EMMCC[Y] = E . (5)

The above functional can be rewritten in a moment-explicit
form by introducing resolution of identity e

T
(A)

e
�T

(A) in the
numerator of MMCC functional

EMMCC[YT ] =
hYT |He

T
(A) |Fi

hYT |eT (A) |Fi

=
hYT |eT

(A)
e
�T

(A)
He

T
(A) |Fi

hYT |eT (A) |Fi

=
hYT |eT

(A)
M

(A)|Fi
hYT |eT (A) |Fi

, (6)

where the action of moment operator M
(A) on the reference

function is defined as

M
(A)|Fi= e

�T
(A)

He
T
(A) |Fi . (7)

The many-body form of the above functional for the trial
wave function, representing the exact one, allows for finding
the relationship between exact energy E and the energy E

(A)

of the approximate CC formulation defined by an arbitrary
T
(A) cluster operator. To show this, let us decompose the

unit operator I acting in the Hilbert space into P, QA, and
QR parts,

I = P+QA +QR (8)

where P = |FihF| is a projection operator onto the ref-
erence function |Fi, QA is a projection operator onto a
sub-space of excited configurations (with respect to the
reference function) generated by action of T

(A) onto the
reference function, and QR is a projection operator onto all
remaining excited Slater determinants. Next, let us expand
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