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Accurate knowledge of equation of state, transport and optical properties describing 
possible phase transitions across the warm-dense-matter (WDM) regime plays an important role 
in planetary science, astrophysics, and inertial confinement fusion. Ab initio molecular dynamics 
(AIMD) simulations based on free-energy density functional theory (DFT), in combination with 
the Kubo–Greenwood (KG) formulation for transport and optical properties, has proven to be a 
successful and key tool to understanding WDM and high-energy-density plasmas across different 
temperature regimes. DFT requires approximations for the exchange-correlation (XC) energy 
density functional. A common approximation is to use a ground-state XC functional, which does 
not consider any explicit XC thermal effects.  

We present strategies for thermalization of the ground-state meta-generalized gradient 
approximation (meta-GGA) XC functionals to treat XC thermal effects explicitly. A simple but 
accurate scheme is implemented via universal additive thermal correction to XC using a 
perturbative-like self-consistent approach. The additive correction with explicit temperature 
dependence is applied to the ground-state deorbitalized, strongly constrained and appropriately 
normed (SCAN-L) meta-GGA XC, leading to thermal XC functional denoted as T-SCAN-L. The 
thermal T-SCAN-L meta-GGA functional shows significant improvement in DFT calculation 
accuracy for warm dense matter by a factor of 3 to 10, achieving unprecedented accuracy of total 
pressure between a few tenths and ~1% when compared to thermal GGA and traditional ground-
state XC functionals, as demonstrated by the comparison to path-integral Monte Carlo 
simulations for helium and hydrogen equation of state. 
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