Magnetic Field Driven Electron Dynamics in Graphene

Fatima^{1,5}, Talgat Inerbaev^{2,3,4}, Wenjie Xia¹, <u>Dmitri S. Kilin⁵</u>

¹Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, USA

 ²L. N. Gumilyov Eurasian National University, Nursultan 010000, Kazakhstan
³Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090, Russia
⁴National University of Science and Technology MISIS, 4 Leninskiy pr., Moscow 119049, Russian Federation
⁵Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North

Dakota 58108, USA

It has been realized that layered materials have potential for advanced technological applications. When layered materials thinned to its physical limits, they exhibit different novel properties compare to their bulk counterpart. [1] Therefore, these materials are referred to as two dimensional (2D) materials. Technologically relevant property- electron dynamics are influenced by momentum dispersion [2,3] in 2D materials such as in graphene, MoSi₂, and Bi₂Te₃ as they are periodic. However, computational modeling of momentum influenced electron dynamics under applied magnetic field remain challenging. Here, we perform non-equilibrium electron dynamics calculations in graphene using evolution operator for wave function in momentum space under interaction with applied weak magnetic field, B^{2} . The non-adiabatic dynamics calculations are performed for thermal equilibration using Redfield equation of motion for density matrix. [4] Thermal lattice induced dissipation is completing with magnetic field induced coherence. Our results show that both magnetic field and thermal fluctuations of lattice lead to violation of momentum conservation for charge carriers. Our work is expected to establish a fundamental understanding of magnetic field effect on non-equilibrium properties of graphene influenced by momentum sampling, which is critical for optoelectronic and photovoltaic applications.

- [1] Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. *Rev. Mod. Phys.*, **2010**, 82, 30453067.
- [2] Fatima; Han, Y.; Vogel, D. J.; Inerbaev, T. M.; Oncel, N.; Hobbie, E. K.; Kilin, D. S. Photoexcited Electron Lifetimes Influenced by Momentum Dispersion in Silicon Nanowires. *J. of Phys. Chem. C* 2019, 123, 7457-7466.
- [3] Fatima; Vogel, D. J.; Han, Y.; Inerbaev, T. M.; Oncel, N.; Kilin, D. S. First-principles study of electron dynamics with explicit treatment of momentum dispersion on Si nanowires along different directions. *Mol. Phys.* **2019**, 117, 2293-2302.
- [4] Redfield, A. G. On the Theory of Relaxation Processes. *IBM J. Res. Dev.* **1957**, 1, 19–31.