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We present[1–7] a graph theoretic approach to adaptively compute many-
body-approximations in an efficient manner to perform (a) accurate post-
Hartree-Fock AIMD at DFT cost for medium to large sized molecular
clusters, (b) hybrid DFT electronic structure calculations for condensed
phase simulations at the cost of pure and gradient-corrected density func-
tionals, (c) reduced cost on-the-fly basis extrapolation, where we can com-
pute AIMD trajectories accurate to 6-311++G(2df,2pd) with computa-
tional effort commensurate with 6-31+G(d), for both condensed phase
as well as gas-phase calculations, (d) accurate post-Hartree-Fock level
potential energy surfaces at DFT cost for quantum nuclear effects. The
salient features of our approach are ONIOM-like in that, (a) the full sys-
tem (cluster or condensed phase) calculation is performed at a lower level
of theory (semilocal, or pure, DFT for condensed phase or hybrid DFT
for molecular systems), and (b) this approximation is improved through
a correction term that captures all many-body interactions up to any given order within a higher
level of theory (hybrid DFT for condensed phase, CCSD or MP2 for cluster), combined through
graph theoretic methods. Specifically, a region of chemical interest is coarse-grained into a set of
nodes, or vertices, and these nodes are then connected to form edges based on a given definition
of local envelope (or threshold) of interactions. The vertices and edges together define a graph,
which forms the basis for developing the many-body expansion. The methods are demonstrated
through (a) ab initio dynamics studies on protonated water clusters and polypeptide fragments,
(b) potential energy surface calculations on one-dimensional water chains such as those found in
ion-channels, and (c) conformational stabilization and lattice energy studies on homogeneous and
heterogeneous surfaces of water with organic adsorbates using two-dimensional periodic boundary
conditions.
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