First Principle Studies of Point Charge Defect in Two Dimensional Materials

Rijal Biswas

University of Florida

Vacancies, adatoms, dopants, and interstitials change the electronic and optical properties of materials. These defects can be charge neutral; however, some defects can have a net charge. The computational modeling of formation, movement, and combination of charged defects will allow us to study doping of materials in the newly discovered family of two-dimensional materials for use in devices such as solar cells, light-emitting diodes, or transistors. However, theoretical study of charged defects presents challenges and introduces electrostatics artifacts. In this study, we calculate formation energies of charged defects in two-dimensional materials using correction method that is based on a surrogate model for the electrostatics.