Removal of Laughing Gas N₂O by Singlet CH₂: A Theoretical Study <u>Thanh Lam Nguyen</u>, ¹ A. R. Ravishankara, ² and John F. Stanton ¹ tlam.nguyen@chem.ufl.edu, A.R.Ravishankara@colostate.edu, johnstanton@ufl.edu ¹Quantum Theory Project, Department of Chemistry and Physics, University of Florida, Gainesville, FL 32611 (USA). ²Departments of Chemistry and Atmospheric Sciences, Colorado State University, Ft. Collins, CO 80523 (USA). Also associated with the Le Studium, Advanced Institute for Research, Loire Valley, Orleans, France. Laughing gas (N_2O) reacts *extremely slowly* with highly reactive common oxidants such as OH, NO_3 , and O_3 . Subsequently, N_2O can be transported to the stratosphere where it can react with singlet O-atom to yield NO, which then degrades the ozone layer. Because of this, N_2O is currently the most important ozone-depleting substance being emitted. N_2O is often produced in combustion, especially when nitrogen oxide reduction devices are used. Therefore, it is of interest to examine the removal N_2O by singlet CH_2 . We have studied this process using high accuracy thermochemistry mHEAT-345(O) calculations, followed by two-dimensional master equation simulations to predict product yields and rate constants. Two distinctive mechanisms including an addition/elimination (major) and an O-abstraction (minor) pathway have been characterized. The calculated results show that the reaction is very fast with a negative temperature dependence: decreasing from about 10^{-10} cm³/s at 100 K to about 10^{-11} cm³/s at 1000 K. In addition, the predicted reaction products are: 98% for $CH_2O + NO$ and 2% for $CH_2O + NO$, which are almost pressure- and temperature-independent. While CH_2 is not present in the atmosphere of the Earth, the reaction is potentially important in planetary atmospheres. Moreover, it seems likely that similarly fast destruction of N_2O might occur via reactions with Criegee intermediates and related species.